Accelerating sparse matrix–matrix multiplication with GPU Tensor Cores
نویسندگان
چکیده
منابع مشابه
Sparse Matrix-vector Multiplication on Nvidia Gpu
In this paper, we present our work on developing a new matrix format and a new sparse matrix-vector multiplication algorithm. The matrix format is HEC, which is a hybrid format. This matrix format is efficient for sparse matrix-vector multiplication and is friendly to preconditioner. Numerical experiments show that our sparse matrix-vector multiplication algorithm is efficient on
متن کاملFast sparse matrix multiplication on GPU
Sparse matrix multiplication is an important algorithm in a wide variety of problems, including graph algorithms, simulations and linear solving to name a few. Yet, there are but a few works related to acceleration of sparse matrix multiplication on a GPU. We present a fast, novel algorithm for sparse matrix multiplication, outperforming the previous algorithm on GPU up to 3× and CPU up to 30×....
متن کاملImplementing Sparse Matrix-Vector Multiplication with QCSR on GPU
We are going through the computation from single core to multicore architecture in parallel programming. Graphics Processor Units (GPUs) have recently emerged as outstanding platforms for data parallel applications with regular data access patterns. However, it is still challenging to optimize computations with irregular data access patterns like sparse matrix-vector multiplication (SPMV). SPMV...
متن کاملGPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication
Many high performance computing applications require computing both sparse matrix-vector product (SMVP) and sparse matrix-transpose vector product (SMTVP) for better overall performance. Under such a circumstance, it is critical to maintain a similarly high throughput for these two computing patterns with the underlying sparse matrix encoded in a single storage format. The compressed sparse blo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Electrical Engineering
سال: 2020
ISSN: 0045-7906
DOI: 10.1016/j.compeleceng.2020.106848